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Abraham de Moivre was born in

Vitry-le-François in France on 26

May 1667. It was not until his late

teenage years that de Moivre had

any formal mathematics training. In

1685 religious persecution of

Protestants became very serious in

France and de Moivre, as a

practising Protestant, was

imprisoned for his religious beliefs.

The length of time for which he

was imprisoned is unclear, but by

1688 he had moved to England and

was a private tutor of mathematics,

and was also teaching in the coffee

houses of London. In the last decade

of the 15th century he met Newton

and his first mathematics paper

arose from his study of fluxions in

Newton’s Principia.This first paper was accepted by the Royal Society in 1695 and in

1697 de Moivre was elected as a Fellow of the Royal Society. He researched mortality

statistics and probability and during the first decade of the 16th century he published

his theory of probability. In 1710 he was asked to evaluate the claims of Newton and

Leibniz to be the discoverers of calculus.This was a major and important undertaking

at the time and it is interesting that it was given to de Moivre despite the fact he had

found it impossible to gain a university post in England. In many ways de Moivre is

best known for his work with the formula .The theorem that comes

from this bears his name and will be introduced in this chapter.

De Moivre was also famed for predicting the day of his own death. He noted that each
night he was sleeping 15 minutes longer and by treating this as an arithmetic
progression and summing it, he calculated that he would die on the day that he slept
for 24 hours.This was 27 November 1754 and he was right!

1cos x � i sin x 2n
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Abraham de Moivre



Dividing imaginary numbers
This is done in the same way as multiplication.
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17.1 Imaginary numbers
Up until now we have worked with any number k that belongs to the real numbers and

has the property Hence we have not been able to find and

have not been able to solve equations such as In this chapter we begin by

defining a new set of numbers called imaginary numbers and state that 

An imaginary number is any number of the form

Adding and subtracting imaginary numbers
Imaginary numbers are added in the usual way and hence 

They are also subtracted in the usual way and hence 

Multiplying imaginary numbers
When we multiply two imaginary numbers we need to consider the fact that powers of
i can be simplified as follows:

3i � 7i � �4i.

3i � 7i � 10i.

 � ni

 � 2n˛

2 � 2�1

 2�n˛

2 � 2n˛

2 � �1

i � 2�1.

x˛

2 � �1.

2negative numberk˛

2 � 0.
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 i˛

5 � i˛

4 � i � 1 � i � i

 i˛

4 � i˛

2 � i˛

2 � �1 � �1 � 1

 i˛

3 � i˛

2 � i � �1 � i � �i

 i2 � i � i � 2�1 � 2�1 � �1

This pattern now continues and is shown
in the diagram:

i

i2 � �1

i3 � �i

 1 � i4

Example

Simplify 

Since we simplify this to the form 

Hence

 � �1
 � 18 � �1

 � 1i˛

4 28 � i˛

2

 i˛

34 � i˛

32 � i˛

2

i˛

4n � i˛

x.i˛

4 � 1

i˛

34.

Example

Simplify 

 � 45i
 � 4511 26 � i

 � 451i˛

4 26 � i

 � 45i˛

24 � i

15i˛

7 � 3i˛

18 � 45i˛

25

15i˛

7 � 3i˛

18.

Example

Simplify 

 �
12
5

 i

 �
12
5

 11 22i

 �
12
5

 1i˛

4 22i

 �
12
5

 i˛

9

 60i˛

27 � 25i˛˛

18 �
60i˛˛

27

25i˛˛

18

60i˛

27 � 25i˛

18.

If the power of i in the numerator is lower than the power of i in the denominator then

we need to use the fact that i˛

4 � 1.

Example

Simplify 

 � �
3
2

 i

 �
3
2

 i˛

3

 �
3i˛

8

2i˛

5 since i˛

8 � 1i˛

4 22 � 1

 �
3

2i˛

5

 27i˛

20 � 18i˛

25 �
27i˛

20

18i˛

25

27i˛

20 � 18i˛

25.
This reminds us that
every fourth multiple
comes full circle.

Hence when performing these operations the answers should not involve powers of i.
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1 Add the following imaginary numbers.
a b

c d
2 Subtract the following imaginary numbers.

a

b

c

d

3 Multiply the following imaginary numbers giving the answer in the form n or ni
where 
a b

c d

e f

g

4 Divide the following imaginary numbers giving the answer in the form n or ni
where 

a b

c d

5 Find x if:

a b

6 Simplify these.

a b

c d

e
6i � 3i˛

2 � 2i˛

3

4i

3i˛

5 �
2i˛

6

6i˛

3

3i˛

4

2i
�

2i˛

5

i˛

2 �
3i
i˛

2

2i˛

3 � 3i˛

3 � 7i˛

4

3i
3i˛

3 � 6i˛

5 � 8i˛

7 � 2i˛

9

3 � 2i˛

2

i
� xixi � 3i˛

3 � 4i˛

5 � 2i

16 � i
15i˛

3

6i˛

2

6i˛

7 � 3i˛

315i˛

3 � 2i

n H �.

3i˛

2 � 5i˛

4 � 6i˛

5

7i˛

7 � 5i˛

59i2 � 8i˛

5

8i � 12i˛

415i˛

2 � 3i˛

3

4i � 8i16 � 15i
n H �.

25i � 31i � 16i � 62i

56i � 80i

38i � 23i

20i � 8i

15i � 45i5i � 70i � 35i � 2i

20i � 18i3i � 15i

Exercise 1

17.2 Complex numbers
A complex number is defined as one that has a real and an imaginary part. Examples
of these would be or 

They are generally written in the form where x and y can have any real value
including zero.

Hence 6 is a complex number since it can be written in the form and 5i is a
complex number since it can be written as 

Hence both real numbers and imaginary numbers are actually subsets of complex
numbers and the notation for this set is 

Thus we can say 

Adding and subtracting complex numbers
This is done by adding or subtracting the real parts and the imaginary parts in separate
groups.

3 � 5i H �.

�.

0 � 5i.
6 � 0i

z � x � iy

6 � 5i.2 � 3i

Example

Simplify 

 � 7 � 4i
 15 � 7i 2 � 12 � 3i 2 � 15 � 2 2 � 17i � 3i 2

15 � 7i 2 � 12 � 3i 2 .

Multiplication of complex numbers
This is done by applying the distributive law to two brackets and remembering that

It is similar to expanding two brackets to form a quadratic expression.i˛

2 � �1.

Example

Simplify 

 � 5 � 5i
 19 � 2i 2 � 14 � 7i 2 � 19 � 4 2 � 1�2i � �7i 2

19 � 2i 2 � 14 � 7i 2 .

Example

Simplify 

 � �12 � 5i
 � 61�1 2 � 9i � 4i � 6

 12i � 3 2 13i � 2 2 � 6i˛

2 � 9i � 4i � 6

12i � 3 2 13i � 2 2 .

We can also use the binomial theorem to simplify complex numbers.

Example

Simplify 

 � 37
 � 36 � 1�1 2

 16 � i 2 16 � i 2 � 36 � 6i � 6i � i˛

2

16 � i 2 16 � i 2 .

Example

Express in the form 

 � �597 � 122i
 � 243 � 4051�2i 2 � 2701�4 2 � 9018i 2 � 15116 2 � 1�32i 2
 � 243 � 4051�2i 2 � 27014i˛

2 2 � 901�8i˛

3 2 � 15116i˛

4 2 � 1�32i˛

5 2

5C˛313 2
21�2i 23 � 5C˛413 2

11�2i 24 � 5C˛513 2
01�2i 25�

 13 � 2i 25 � 5C˛013 2
51�2i 20 � 5C˛113 2

41�2i 21 � 5C˛213 2
31�2i 22

x � iy.13 � 2i 25



Zero complex number
A complex number is only zero if both the real and imaginary parts are zero, i.e. 

Equal complex numbers
Complex numbers are only equal if both the real and imaginary parts are separately
equal. This allows us to solve equations involving complex numbers.

0 � 0i.
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Division of complex numbers
Before we do this, we have to introduce the concept of a conjugate complex number.
Any pair of complex numbers of the form and are said to be conjugate
and is said to be the conjugate of 

If is denoted by z, then its conjugate is denoted by or 

Conjugate complex numbers have the property that when multiplied the result is real.
This was demonstrated in the example at the top of the page and the result in general is

To divide two complex numbers we use the property that if we multiply the numerator
and denominator of a fraction by the same number, then the fraction remains
unchanged in size. The aim is to make the denominator real, and hence we multiply
numerator and denominator by the conjugate of the denominator. This process is called
realizing the denominator. This is very similar to rationalizing the denominator of a
fraction involving surds.

 � x˛

2 � y˛

2

 � x˛

2 � 1�1 2y˛

2

 1x � iy 2 1x � iy 2 � x˛

2 � ixy � ixy � i2y˛

2

z*.zx � iyx � iy

x � iy.x � iy
x � iyx � iy

Note the similarity to
evaluating the difference
of two squares.

Example

Write in the form 

 �
1
5

�
8
5

 i

 �
1 � 8i

5

 �
4 � 8i � 3
4 � 1�1 2

 �
4 � 6i � 2i � 3i˛

2

4 � 2i � 2i � i˛

2

 
2 � 3i
2 � i

�
12 � 3i 2

12 � i 2
�
12 � i 2

12 � i 2

a � ib.
2 � 3i
2 � i

Example

Solve 

Equating the real parts of the complex number gives 
Equating the imaginary parts of the complex number gives y � �7.

x � 9.

 1 x � iy � 9 � 7i

 1 x � iy � 6 � 7i � 31�1 2

 1 x � iy � 6 � 2i � 9i � 3i˛

2

 x � iy � 13 � i 2 12 � 3i 2

x � iy � 13 � i 2 12 � 3i 2 .

This idea also allows us to find the square root of a complex number.

This can also be done in
a different way that will
be dealt with later in the
chapter.

Example

Find the values of in the form 

We now use the idea of equal complex numbers and equate the real and
imaginary parts.

Equating real parts 
Equating imaginary parts 
These equations can be solved simultaneously to find a and b.

If we substitute into we find

Ignoring the imaginary roots

Therefore

If we had used the imaginary values for a then

 1 b �
2
i
   or   b � �

2
i

 a � i    or    a � �i  

23 � 4i � 2 � i or �2 � i

 1 b � 1 or b � �1

 1 a � 2 or a � �2

 1 1a˛

2 � 4 2 1a˛

2 � 1 2 � 0

 1 a˛

4 � 3a˛

2 � 4 � 0

 a˛

2 � ¢2
a
≤2

� 3

a˛

2 � b˛

2 � 3b �
2
a

1 2ab � 4 1 ab � 2
1 a˛

2 � b˛

2 � 3

 1 3 � 4i � a˛

2 � b˛

2 � 2iab

 1 3 � 4i � a˛

2 � 2iab � i˛

2b˛

2

 1 123 � 4i 22 � 1a � ib 22

 Let 23 � 4i � a � ib

a � ib.23 � 4i

As with the square root
of a real number, there
are two answers and
one is the negative of
the other.

It is usually assumed
that a and b are real
numbers and we ignore
imaginary values for a
and b, but if we assume
they are imaginary the
same answers result.



Complex roots of a polynomial equation
We know from Chapter 4 that solving any polynomial equation with real coefficients
always involves factoring out the roots. Hence if any polynomial has complex roots these
will always occur in conjugate pairs. For a polynomial equation it is possible that some of
the roots will be complex and some will be real. However, the number of complex roots
is always even. Hence a polynomial of degree five could have:

• five real roots;
• three real roots and two complex roots; or
• one real root and four complex roots.

Having two real roots and three complex roots is not possible.

To find the roots we need to use long division.
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Complex roots of a quadratic equation
In Chapter 2 we referred to the fact that when a quadratic equation has the property

then it has no real roots. We can now see that there are two complex

conjugate roots.

b˛

2 � 4ac 6 0,

480

So

as before � 2 � i or �2 � i
 � i � 2i˛

2 or �i � 2i˛

2

 23 � 4i � i � i˛1�2i 2  or �i � i˛12i 2

 1 b � �2i  or  b � 2i
 1 b � 2i˛

3  or   b � �2i˛

3

 1 b �
2i˛

4

i
  or  b � �

2i˛

4

i
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Example

Solve the equation 

Using the quadratic formula 

 1 x � 1 � i23 or x � 1 � i23

 1 x �
2 ; 2i23

2

 1 x �
2 ; 2�12

2
�

2 ; 2�1212
2

 x �
2 ; 24 � 16

2

x˛

2 � 2x � 4 � 0.

Example

Form a quadratic equation which has a complex root of 
Since one complex root is the other root must be its complex conjugate.
Hence the other root is 
Thus the quadratic equation is

 1 x˛

2 � 4x � 5 � 0

 1 x˛

2 � 4x � 14 � 2i � 2i � i˛

2 2 � 0

 1 x˛

2 � 12 � i 2x � 12 � i 2x � 12 � i 2 12 � i 2 � 0

 3x � 12 � i 2 4 3x � 12 � i 2 4 � 0

2 � i.
2 � i

2 � i.

Example

Given that is a solution to the equation find

the other two roots.
Since one complex root is another complex root must be its conjugate.
Hence is a root.
Thus a quadratic factor of the equation is 

Using long division:

Hence 

1 z � �1, 2 � i, 2 � i

z˛

3 � 3z˛

2 � z � 5 � 1z � 1 2 1z˛

2 � 4z � 5 2 � 0

z � 1
1z˛

2 � 4z � 5 2 �z˛

3 � 3z˛

2 � z �5
� z˛

3 � 4z˛

2 � 5z

z̨ 2 � 4z� 5
� z̨2 � 4z� 5

0   

 1 z˛

2 � 4z � 5

 1 z˛

2 � 4z � 14 � 2i � 2i � i˛

2 2

 1 z˛

2 � 12 � i 2z � 12 � i 2z � 12 � i 2 12 � i 2

 3z � 12 � i 2 4 3z � 12 � i 2 4

2 � i
2 � i

z˛

3 � 3z˛

2 � z � 5 � 0,z � 2 � i

Many of the operations we have covered so far could be done on a calculator.

The sign in the 
formula ensures that the
complex roots of 
quadratic equations are
always conjugate.

;



1 Add these pairs of complex numbers.
a and 

b and 
c and 

d and 

e and 

2 Find 

a and 

b and 

c and 

d and 

3 Simplify these.

a b c

d e f

g h i

j k

4 Realize the denominator of each of the following fractions and hence express
each in the form 

a b c d

e f g h

i j

5 Express these in the form 

a b c d

6 Solve these equations for x and y.

a b c

d e f

g h i

j k

7 Find the real and imaginary parts of these.

a b c

d e f

g h i

j
x

1 � iy
�

3
4 � 3xi

3211 � i23 2 44¢cos 

p

3
� i sin 

p

3
≤2

13 � 2i 25

x
x � iy

�
x

x � iy
a

2 � ib
�

3
4 � ia

3 � i
2 � i

�
1

7 � 4i

3
2 � 5i

�
5

3 � 4i
3 � 7i

8 � 11i
16 � 5i 2 12 � 3i 2

x � iy � ¢ 2 � i
3 � 2i

≤2

� 15ix � iy � 6i˛

2 � 3i � 12 � i 22

x � iy �
2 � 7i
3 � 4i

� 21x � iy 22 � 15ix � iy � 12 � 5i 22

x � iy �
3i � 2
i � 4

x � iy � 6i˛

2 � 3ix � iy � 13 � 2i 22

x � iy � �3ix � iy � 8x � iy � 15 � 7i

1�1 � 3i 2813 � 4i 2511 � 2i 2311 � i 24

x � iy.

ix˛¢3x � iy

y � ix
≤2 � 5i

x � iy

i ˛¢3 � 4i
3 � i

≤2 � i
2 � i

x � iy

2x � iy
4 � 12i

2i

�5 � 4i
�2 � 5i

3 � 4i
5 � 2i

5i
2 � 3i

2
3 � i

a � bi.

i˛1m � 2i 2313 � i 21m � in 23
1x � iy 22111 � 2i 22i˛15 � 2i 2 112 � 5i 2

1a � bi 2 1a � bi 2115 � 9i 2 115 � 9i 219 � 5i 2 115 � 4i 2

i˛12 � 7i 215 � 3i 2 110 � i 213 � 2i 2 12 � 5i 2

v � �12 � 17iu � �5 � 4i

v � 17 � 4iu � �3 � 6i

v � 3 � 15iu � 16 � 7i

v � 2 � 13iu � 5 � 8i

u � v.

�3 � 29i�4 � 18i

6 � 14i8 � 7i

3 � 7i4 � 8i
13 � 16i5 � 12i

6 � 9i2 � 7i
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Example

Find 

16 � 6i 2 � 17 � 2i 2 � 13 � 4i

16 � 6i 2 � 17 � 2i 2 .

Example

Find 

or �3 � 2i25 � 12i � 3 � 2i

25 � 12i.

Example

Express in the form 

15 � 4i 27 � 4765 � 441 284i

x � iy.15 � 4i 27

Exercise 2

As with real numbers
the calculator only gives
one value for the square
root, unless the negative
square root is specified.
To find the second
square root, we find the
negative of the first.



As with a vector the complex number will usually have an arrow on it to signify the
direction and is often denoted by z.

On an Argand diagram the complex number can be represented by the vector

where A has coordinates (2, 9). However, since it is the line that represents the

complex number, the vectors and also represent the complex number 2 � 9i.DE
¡

BC
¡

OA
¡

2 � 9i

17  Complex Numbers

485

8 Find the square roots of these.

a b c d

e f g h

i

9 Solve these equations.

a b c

d e
10 Form an equation with these roots.

a b c

d e f

11 Find a quadratic equation with the given root.

a b c d

12 Find a quartic equation given that two of its roots are and 

13 Given that is a root of the equation 

find the other two roots.

14 Find, in the form all the solutions of these equations.

a b

15 Given that express in the form where a and

b are real numbers.

16 Given that the complex number z and its conjugate satisfy the equation

find the possible values of z.

17 If express in its simplest form.

18 Let and be complex numbers. Solve the simultaneous equations

Give your answer in the form where 

19 If find z in the form where 

20 Consider the equation where p and q
are real numbers. Find the values of p and q.

21 If find z in the form where x, y H �.x � iy2z �
3

1 � 2i
� 4 � 3i,

41p � iq 2 � 2q � 3ip � 312 � 3i 2

x, y H �.x � iyz � 1 �
2

1 � i23
,

x, y H �.x � iy
 2z˛1 � iz˛2 � 3 � i
 z˛1 � 2z˛2 � 4

z˛2z˛1

2z �
39
z

z � 12 � 5i,

zz* � iz � 66 � 8i,

z*

a � ib,2z �
1
z

z � �2 � 7i,

z˛

3 � 6z � 20z˛

3 � z˛

2 � z � 15

a � ib,

z˛

3 � 5z˛

2 � 8z � 6 � 0,z � 1 � i

3 � 2i.2 � i

a � ib7 � 6i4 � 3i2 � 7i

5 � 2i, 5 � 2i, 3, �33 � 2i, 3 � 2i, 21 � 2i, 1 � 2i, 1

4 � 3i, 4 � 3i3 � i, 3 � i2 � 3i, 2 � 3i

21x � 4 2 1x � 1 2 � 31x � 7 23x˛

2 � 6x � 5 � 0

x˛

2 � 3x � 15 � 0x˛

2 � x � 1 � 0x˛

2 � 6x � 10 � 0

i ̨¢2 � i
4 � i

≤2

2i �
3 � 2i
1 � i

3 � i
4 � 3i

2 � i
3i

2 � 5i

12 � 13i4 � 3i1 � i�15 � 8i
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17.3 Argand diagrams
We now need a way of representing complex numbers in two-dimensional space and
this is done on an Argand diagram, named after the mathematician Jean-Robert
Argand. It looks like a standard two-dimensional Cartesian plane, except that real
numbers are represented on the x-axis and imaginary numbers on the y-axis.

Hence on an Argand diagram the complex number is represented as the vector 

For this reason it is known as the Cartesian form of a complex number.

¢2
5
≤.2 � 5i

O x

iy

2 � 5i

This is similar to the idea of position vectors and tied vectors introduced in Chapter 12.

x

iy
A C

O

2 � 9i

2 � 9i
z � 2 � 9i

B

D

E

Example

The complex numbers and where m and n are real

numbers, have the property 

a Find the values of m and n.
b Using these values of m and n, find the distance between the points which

represent and in the Argand diagram.

a

Equating real parts:

equation (i) 1 25m � 6n � 100

 
m
2

�
3n
25

� 2

 1

m
2

�
3n
25

� i˛¢m
2

�
4n
25
≤ � 2

 1

m˛11 � i 2

2
�

n˛13 � 4i 2

25
� 2

 1

m˛11 � i 2

11 � i 2 11 � i 2
�

n˛13 � 4i 2

13 � 4i 2 13 � 4i 2
� 2

 
m

1 � i
�

n
3 � 4i

� 2

z˛2z˛1

z˛1 � z˛2 � 2.

z˛2 �
n

3 � 4i
,z˛1 �

m
1 � i



Multiplication by i on the Argand diagram
Consider the complex number 

Hence

These are shown on the Argand diagram.

 1 iz � �y � ix

 iz � ix � i˛

2y

z � x � iy.
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Addition and subtraction on the Argand diagram
This is similar to the parallelogram law for vectors which was explained in Chapter 12.

Consider two complex numbers and represented by the vectors and OB
¡

.OA
¡

z˛2z˛1

486

Equating imaginary parts:

equation (ii)

Subtracting equation (ii) from equation (i): 

Substituting in equation (i): 

b From part a and 

These are shown on the Argand diagram.

Hence the distance between the points is D ¢67 �
8
7
≤2

� ¢� 
8
7

�
8
7
≤2

�
2260

7
.

z˛2 �
n˛13 � 4i 2

7
�

213 � 4i 2

7
z˛1 �

m˛11 � i 2

2
�

811 � i 2

7

m �
16
7

14n � 100 1 n �
50

7

 1 25m � 8n � 0

 
m
2

�
4n
25

� 0

x

iy

z1

z2

O

8
7

8
7� i

6
7

8
7� i
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A

B

C

z2

z1

z1�z1

z1 �z1
O x

If AC is drawn parallel to OB, then also represents We know from vectors that

Hence is represented by the diagonal 

Similarly 

Hence is represented by the diagonal BA
¡

.z˛1 � z˛2

1 BA
¡

� OA
¡

� OB
¡

OB
¡

� BA
¡

� OA
¡

OC
¡

.z˛1 � z˛2

OA
¡

� AC
¡

� OC
¡

.

z˛2.AC
¡

Example

Show and on an Argand diagram.

Let and and represent them on the diagram by the

vectors and respectively. Let C be the point which makes OABC a

parallelogram.

From the diagram it is clear that and 

and these two diagonals represent and respectively. This is

confirmed by the fact that and

z˛1 � z˛2 � 15 � 3i 2 � 12 � 5i 2 � 3 � 8i.

z˛1 � z˛2 � 15 � 3i 2 � 12 � 5i 2 � 7 � 2i

z˛1 � z˛2z˛1 � z˛2

BA
¡

� ¢5
3
≤ � ¢ 2

�5
≤ � ¢3

8
≤OC

¡

� ¢ 7
�2
≤

OB
¡

OA
¡

z˛2 � 2 � 5iz˛1 � 5 � 3i

15 � 3i 2 � 12 � 5i 215 � 3i 2 � 12 � 5i 2

x

iy

z1 � 5 � 3i

z2 � 2 � 5i

z1 � z2 � 3 � 8i

z1 � z2 � 7 � 2i

O

B

C

A

x

iy

Oy

y

x

x

B
A

iz � �y � ix z � x � iy

Considering this diagram the gradient of OA is and the gradient of OB is Since

the product of gradients is these two lines are perpendicular. Hence if

we multiply a complex number by i, the effect on the Argand diagram is to rotate the

vector representing it by 90° anticlockwise.

�1,

�
x
y
.

y

x



If we are asked to express a complex number given in Cartesian form in modulus-
argument form, then we proceed as follows.

If and 

Then

The modulus of a complex number is assumed positive and hence we can ignore the
negative square root.

Also

 1 u � arctan¢y
x
≤

 1 tan u �
y

x

y

x
�

r sin u
r cos u

cos2 u � sin2 u � 1 1 r � 2x˛

2 � y˛

2

 � r˛

21cos2 u � sin2 u 2

 x˛

2 � y˛

2 � r˛

2 cos2 u � r˛

2 sin2 u

y � r sin ux � r cos u
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Notation for complex numbers
So far we have only seen the representation of a complex number in Cartesian form,
that is However, there are two other forms which are very important.

Polar coordinate form

This is more commonly called the modulus-argument form or the mod-arg form. It
defines the complex number by a distance r from a given point and an angle radians
from a given line. Consider the diagram below.

u

x � iy.
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Example

If draw z and iz on an Argand diagram and state iz in the form

 � �4 � 3i

 iz � 3i � 4i˛

2

a � ib.
z � 3 � 4i,

x

iy

O

iz � �4 � 3i z � 3 � 4i

r

P

O

iy

r sin �

r cos �

�
x

represents the complex number has magnitude r and is inclined at an

angle of radians.

From the diagram and 

Thus

y � r sin u.x � r cos u

u

x � iy. OP
¡

OP
¡

x � iy � r˛1cos u � i sin u 2 .

This is the modulus-argument form of a complex number where the modulus is r and
the angle, known as the argument, is It is usual to give in radians. We sometimes
express this as 

If we are asked to express a complex number given in modulus-argument form in
Cartesian form, then we use the fact that and y � r sin u.x � r cos u

1r, u 2 .
uu.

Example

Express the complex number in Cartesian form.

Hence in Cartesian form the complex number is 23 � i.

 1 y � 2 sin 
p

6
� 1

 y � r sin u

 1 x � 2 cos 
p

6
� 23

 x � r cos u

¢2, 
p

6
≤

Example

Express in polar form.

Hence in polar form the complex number is 51cos 0.927 � i sin 0.927 2 .

 1 u � 0.927 p

 1 u � arctan¢4
3
≤

 1 u � arctan¢y
x
≤

 1 r � 232 � 42 � 225 � 5

 r � 2x˛

2 � y˛

2

3 � 4i

This leads us on to the problem of which quadrant the complex number lies in. From the

work done in Chapter 1 we know that has infinite solutions. To resolve

this problem, when calculating the argument in questions like this, it is essential to draw 

u � arctan ¢y
x
≤
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a sketch. Also, by convention, the argument always lies in the range This
is slightly different to the method used in Chapter 1 for finding angles in a given range.
We will demonstrate this in the example below.

�p 6 x 	 p.
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x

iy

12
O

12 � 5i

�5

�

x

iy

5

O�12

�

�12 � 5i

Example

Express the following in modulus-argument form.

a

b

c
In all cases the modulus is the same since the negative signs do not have an effect.

In terms of the argument we will examine each case in turn.
a

From the diagram it is clear that the complex number lies in the fourth quadrant
and hence the argument must be a negative acute angle.

Hence in modulus-argument form the complex number is

b

From the diagram it is clear that the complex number lies in the second
quadrant and hence the argument must be a positive obtuse angle.

 u � arctan¢y
x
≤

i sin1�1.18 2 4 .13 3cos1�1.18 2 �

 1 u � �1.17 p

 1 u � arctan¢ 12
�5
≤

 u � arctan¢y
x
≤

 1 r � 2122 � 52 � 2169 � 13

 r � 2x˛

2 � y˛

2

�12 � 5i

�12 � 5i

12 � 5i

However, this is clearly in the wrong quadrant and hence to find the required
angle we need to add to this giving 

Hence in modulus-argument form the complex number is 

c

From the diagram it is clear that the complex number lies in the third quadrant
and hence the argument must be a negative obtuse angle.

However, this is clearly in the wrong quadrant and hence to find the required
angle we need to subtract from this giving 

Hence in modulus-argument form the complex number is 
i sin1�1.97 2 4 .13 3cos1�1.97 2 �

u � �1.96 pp

 1 u � 1.17 p

 1 u � arctan¢�12
�5
≤

 u � arctan¢y
x
≤

i sin11.97 2 4 .13 3cos11.97 2 �

u � 1.96 pp

 1 u � �1.17 p

 1 u � arctan¢�12
5
≤

x

iy

�5

O�12
�

�12 � 5i

Example

Express in polar form.

To do this we begin by expressing the complex number in Cartesian form, by
realizing the denominator.

Hence and 

 1 r � B9
5

� 1.34 p

 1 r˛

2 � ¢3
5
≤2

� ¢�6
5
≤2

r sin u � �
6
5

r cos u �
3
5

 �
3 � 6i

5

 
3

1 � 2i
�

311 � 2i 2

11 � 2i 2 11 � 2i 2

3
1 � 2i

This comes directly
from a calculator.



 1

z
r

� eiu
1 z � reiu

 1 ln 
z
r

� iu

17  Complex Numbers

493

Exponential form

This is similar to the mod-arg form and is sometimes called the Euler form. A complex

number in this form is expressed as where r is the modulus and is the argument.

Hence becomes in exponential form.

To express Cartesian form in exponential form or vice versa, we proceed in exactly the
same way as changing between polar form and Cartesian form.

We will now show that polar form and exponential form are equivalent.

Let 

We now treat this as a variables separable differential equation.

When 

 1 ln z � ln r � iu

u � 0, z � r 1 ln r � ln c

 1 ln z � iu � ln c

 1 �1
z
 dz � � i du

 1 �1
z
 
dz
du

 du � � i du

 1

1
z
 
dz
du

� i

 1

dz
du

� iz

 1

dz
du

� ir˛1cos u � i sin u 2

 1

dz
du

� r˛1�sin u � i cos u 2

z � r˛1cos u � i sin u 2

5ei 
4p
35¢cos 

4p
3

� i sin 

4p
3
≤

ureiu
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From the diagram the complex number lies in the fourth quadrant and hence
the argument is a negative acute angle.

Hence 
3

1 � 2i
� 1.34 3cos1�1.11 2 � i sin1�1.11 2 4 .

 1 u � �1.10 p

 1 tan u � �2

 
r sin u
r cos u

�

�6
5
3
5

x

iy

�O

3
5

3
5

6
5� 6

5� i
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Example

Express in exponential form.

and 

From the diagram above the complex number lies in the second quadrant and
hence the argument is a positive obtuse angle.

From the calculator However, this is clearly in the wrong quadrant
and hence to find the required angle we need to add to this giving

1 �2 � 5i � 229e˛

1.95i

u � 1.95 p

p

u � �1.19 p

 1 tan u � �2.5

 
r sin u
r cos u

�
5

�2

 1 r � 229

 1 r˛

2 � 1�2 22 � 15 22
r sin u � 5r cos u � �2

�2 � 5i

�2

5�2 � 5i

�
O x

iy

Products and quotients in polar form
If and 

Remembering the compound angle formulae from Chapter 7

Hence if we multiply two complex numbers in polar form, then we multiply the moduli
and add the arguments.

1 z˛1z˛2 � ab 3cos1a � b 2 � i sin1a � b 2 4

 1 z˛1z˛2 � ab 3 1cos a cos b � sin a sin b 2 � i˛1sin a cos b � cos a sin b 2 4

 1 z˛1z˛2 � ab˛1cos a cos b � i sin a cos b � i cos a sin b � i˛

2 sin a sin b 2

 Then z˛1z˛2 � ab˛1cos a � i sin a 2 1cos b � i sin b 2

z˛2 � b˛1cos b � i sin b 2z˛1 � a˛1cos a � i sin a 2

and arg1z˛1z˛2 2 � arg z˛1 � arg z˛2�z˛1z˛2� � �z˛1� � �z˛2�

Similarly 
z˛1

z˛2
�

a
b

 3cos1a � b 2 � i sin1a � b 2 4 .

A calculator will also
give complex numbers
in exponential form if
required.

The standard notation
for the modulus of a
complex number z is 
and the standard 
notation for the 
argument of a complex
number z is arg (z).

�z�



1 If and using the
parallelogram law, represent these lines on an Argand diagram, showing
the direction of each line by an arrow.
a b c d e

2 Express these complex numbers in the form 

a b c d e 10 f 6i

3 Express these complex numbers in the form 
a b c d e 8 f 2i1 � 9i�2 � 7i�3 � 4i4 � 4i

reiu.

4 � 5i�5 � i�2 � 2i1 � i23

r˛1cos u � i sin u 2 .

z˛3 � z˛4z˛4 � z˛1z˛1 � z˛4z˛2 � z˛3z˛1 � z˛3

z˛4 � �5 � i,z˛1 � 1 � 2i, z˛2 � 2 � 4i, z˛3 � �4 � 3i
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Hence if we divide two complex numbers in polar form, then we divide the moduli and
subtract the arguments.
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Example

Let and 
a Find the product in the form 
b Find and in exponential form.

c Hence show that 

a

b For and 

The diagram shows the complex number lies in the fourth quadrant and
hence the argument is a negative acute angle.

For and 

 1 r � 210

 1 r˛

2 � 13 22 � 1�1 22
r sin u � �1z˛2, r cos u � 3

1 z˛1 � 25e˛

i1arctan1�1
222

 1 u � arctan¢�1
2
≤

 1 tan u � �
1
2

 
r sin u
r cos u

�
�1
2

 1 r � 25

 1 r˛

2 � 12 22 � 1�1 22
r sin u � �1z˛1, r cos u � 2

 � 5 � 5i

 � 6 � 2i � 3i � i˛

2

 z˛1z˛2 � 12 � i 2 13 � i 2

�
p

4
� arctan¢�1

2
≤ � arctan¢�1

3
≤.

z˛1z˛2z˛1, z˛2

x � iy.z˛1z˛2

z˛2 � 3 � i.z˛1 � 2 � i

x

iy

�1

O

2
�

2 � i

x

iy

�1

O
3

�

3 � i

and arg¢z˛1

z˛2
≤ � arg z˛1 � arg z˛22 z˛1

z˛2
2 � �z˛1�

�z˛2�

The diagram shows the complex number lies in the fourth quadrant and
hence the argument is a negative acute angle.

For and 

The diagram shows the complex number lies in the fourth quadrant and
hence the argument is a negative acute angle.

c Since 

�
p

4
� arctan¢�1

2
≤ � arctan¢�1

3
≤

arg1z˛1z˛2 2 � arg z˛1 � arg z˛2

 1 z˛1z˛2 � 522e�i 1p4 2

 1 u � �
p

4

 1 tan u � �1

 
r sin u
r cos u

�
�5
5

 1 r � 522

 1 r˛

2 � 15 22 � 1�5 22

r sin u � �5z˛1z˛2, r cos u � 5

1 z˛2 � 210e˛

i˛1arctan1�1
322

 1 u � arctan¢�1
3
≤

 1 tan u � �
1
3

 
r sin u
r cos u

�
�1
3

�5

5

5 � 5i

O x

iy

�

Exercise 3



15 a Find the modulus and argument of the complex number

b Shade the region in the Argand plane such that and

for any complex number 

c Determine if z lies in this region.


.
1
2

6 �
� 6 3

p

2
6 arg 
 6

3p
4

z �
122 � i 2 11 � i22 2

11 � i 22
.
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4 Express these in the form 

a b

c d

e f g h

5 If and find the modulus and argument of:

a b c 2mn d

6 Find the modulus and argument of each root of these equations.

a b c

7 a Express these complex numbers in exponential form.
i ii

iii iv
b Hence find the modulus and argument of:

i ii iii iv v

vi vii viii

8 a If and draw and on an Argand diagram.

b If and draw and on an Argand diagram.
c Write down the transformation which maps the line segment onto

the line segment 

9 a If and express and in polar form.

b Hence find the modulus and argument of and 

10 If and express and in the form 

Sketch an Argand diagram showing the points P representing the complex 

number and Q representing the complex number 

11 a Show that 

b Hence find the roots to the equation in the form 

c Let the two complex roots be denoted by and Verify that 

and 
12 a The two complex numbers and are represented on an Argand 

diagram. Show that 

b If and find:

i the greatest possible value of 

ii the least possible value of 

13 If where is real, show that 

14 a Find the solutions to the equation in modulus-

argument form.
b On the Argand diagram, the roots of this equation are represented by the

points P and Q. Find the angle POQ.

3z˛

2 � 4z � 3 � 0

1
1 � z

�
1
2

� i cot 
u

2
.uz � cos u � i sin u

�z1 � z2�.
�z1 � z2�

z˛2 � 12 � 5i,�z1� � 3

�z1 � z2� 	 �z1� � �z2�.
z˛2z˛1

z˛2 � z˛1
2.

z˛1 � z˛2
2z˛2.z˛1

x � iy.z˛

3 � 1

z˛

3 � 1 � 1z � 1 2 1z˛

2 � z � 1 2 .

106z˛1 � 39z˛2.

106z˛1 � 39z˛2

x � iy.z2z1z˛2 �
2 � i
3 � 2i

,z˛1 �
3 � i

2 � 7i

z˛1

z˛2
.z˛1z˛2

z˛2z˛1z˛2 � �1 � i,z˛1 � 2 � i23

z˛3z˛4.
z˛1z˛2

z˛4z˛3z˛4 � �iz˛2,z˛3 � �iz˛1

z˛2z˛1z˛2 � 2 � 3i,z˛1 � 3 � 5i

3z ˛3z ˛42 

z˛3

z˛4

z˛1

z˛4

z˛3

z˛2

z˛2

z˛4
z˛4z˛1z˛3z˛1z˛1z˛2

z˛4 � 1 � i23z˛3 � 24 � 7i

z˛2 � �3 � 4iz˛1 � 5 � 12i

z˛

2 � 4z � 7 � 0z˛

2 � 2z � 5 � 0z˛

2 � 3z � 7 � 0

4m
n

3m � 5n2m � n

n � 2 � i,m � 5 � 7i

219e�i 
3p
815e�i 

p
625ei 

2p
33ei 

3p
4

215¢cos¢� p
12
≤ � i sin¢� p

12
≤≤10¢cos¢�p

4
≤ � i sin¢�p

4
≤≤

25¢cos 

5p
6

� i sin 

5p
6
≤2¢cos 

p

3
� i sin 

p

3
≤

a � ib.
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17.4 de Moivre’s theorem
We showed earlier that 

Hence        

This is more often stated in polar form.

 z˛

n � r˛

neinu 1

 z˛

n � 1reiu 2n

z � reiu.

If then z˛

n � r˛

n1cos u � i sin u 2n � r˛

n1cos nu � i sin nu 2 .z � r˛1cos u � i sin u 2

This is de Moivre’s theorem.

An alternative proof of
de Moivre’s theorem,
using the method of
proof by induction, will
be shown in Chapter 18.

Example

Write in the form 

Using de Moivre’s theorem

 � cos p � i sin p

 � cos 5p � i sin 5p

 ¢cos 

p

3
� i sin 

p

3
≤15

� cos 

15p
3

� i sin 

15p
3

cos nu � i sin nu.¢cos 

p

3
� i sin 

p

3
≤15

Remember: The
argument of a complex
number lies in the
range �p 6 u 	 p.

Example

Write in the form 

 � 256¢cos 

2p
3

� i sin 

2p
3
≤

 � 256¢cos 

8p
3

� i sin 

8p
3
≤

 B2¢cos 

p

3
� i sin 

p

3
≤R8

� 28¢cos 

p

3
� i sin 

p

3
≤8

r˛1cos nu � i sin nu 2 .B2¢cos 

p

3
� i sin 

p

3
≤R8



This is an alternative way of finding multiple angles of sin and cos in terms of powers of
sin and cos.
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Example

Write in the form 

We know that and 

Hence

 � 1cos u � i sin u 2�
1
5

 cos 

u

5
� i sin 

u

5
� cos¢�u

5
≤ � i sin¢�u

5
≤

sin1�u 2 � �sin ucos1�u 2 � cos u

1cos u � i sin u 2n.cos 

u

5
� i sin 

u

5

Example

Simplify 

Since de Moivre’s theorem is used on expressions of the form 
we need to put all expressions in this form:

We now apply de Moivre’s theorem:

Since and 

� 41cos u � i sin u 2

sin1�u 2 � �sin ucos1�u 2 � cos u

 � 41cos1�u 2 � i sin1�u 2 2

 � 41cos u � i sin u 2�1

 
41cos u � i sin u 241cos u � i sin u 2�2

1cos u � i sin u 23

14 cos 4u � 4i sin 4u 2 1cos1�2u 2 � i sin1�2u 2 2

1cos 3u � i sin 3u 2

� i sin nu 2r˛1cos nu

14 cos 4u � 4i sin 4u 2 1cos 2u � i sin 2u 2

1cos 3u � i sin 3u 2
.

Example

Use de Moivre’s theorem to derive expressions for and in terms
of and 

From de Moivre’s theorem we know that

Using Pascal’s triangle or the binomial theorem, we find

By equating real parts we find 

And by equating imaginary parts we find � 4 cos u sin3 u.sin 4u � 4 cos3 u sin u

cos 4u � cos4 u � 6 cos2 u sin2 u � sin4 u.

 � cos4 u � 4i cos3 u sin u � 6 cos2 u sin2 u � 4i cos u sin3 u � sin4 u

4 cos u1i sin u 23 � 1i sin u 24�

 cos 4u � i sin 4u � cos4 u � 41cos3 u 2 1i sin u 2 � 61cos2 u 2 1i sin u 22

1cos u � i sin u 24 � cos 4u � i sin 4u

sin u.cos u
sin 4ucos 4u

Example

Using de Moivre’s theorem, show that where and

use the equation to solve 

Since we want we need expressions for and 
From de Moivre’s theorem we know that

Using Pascal’s triangle we find

By equating real parts we find 

And by equating imaginary parts we find 

If we now let 

Hence this equation can be solved using 

Hence the solutions to the equation are tan¢�p
4
≤, tan 

p

12
, tan 

5p
12

 1 u � �
p

4
, 
p

12
, 

5p
12

 1 3u � �
3p
4

, 
p

4
, 

5p
4

tan 3u � 1
 1 t˛

3 � 3t˛

2 � 3t � 1 � 0

 
3t � t˛

3

1 � 3t˛

2 � 1

tan 3u � 1

 1 tan 3u �
3t � t˛

3

1 � 3t˛

2

 1 tan 3u �

3 

sin u
cos u

�
sin3 u
cos3 u

cos3 u
cos3 u

� 3 

sin2 u
cos2 u

 Hence tan 3u �
sin 3u
cos 3u

�
3 cos2 u sin u � sin3 u
cos3 u � 3 cos u sin2 u

sin 3u � 3 cos2 u sin u � sin3 u.

cos 3u � cos3 u � 3 cos u sin2 u.

 � cos3 u � 3i cos2 u sin u � 3 cos u sin2 u � i sin3 u

 cos 3u� i sin 3u�cos3 u�31cos2 u 2 1i sin u 2�31cos u 2 1i sin u 22� 1i sin u 23

1cos u � i sin u 23 � cos 3u � i sin 3u

cos 3u.sin 3utan 3u

t˛

3 � 3t˛

2 � 3t � 1 � 0.

t � tan utan 3u �
3t � t˛

3

1 � 3t˛

2

Dividing numerator and
denominator by cos3 u

Letting t � tan u

Example

If using de Moivre’s theorem, show that 

Since and 
1
z

� cos u � i sin u

sin1�u 2 � �sin ucos1�u 2 � cos u
 � cos1�u 2 � i sin1�u 2

 
1
z

� z˛

�1 � 1cos u � i sin u 2�1

1
z

� cos u � i sin u.z �cos u� i sin u,

Since 
and i˛

4 � 1.
i˛

2 � �1, i˛

3 � �i

Since and
i˛

3 � �i

i˛

2 � �1

This now leads to four useful results.

If and by adding the two equations together

we find

1
z

� cos u � i sin u,z � cos u � i sin u
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z �
1
z

� 2 cos u

If we subtract the two equations we find

z �
1
z

� 2i sin u

This can be generalized for any power of z.

If then 

and 

Once again by adding and subtracting the equations we find

z˛

�n � 1cos u � i sin u 2�n � cos1�nu 2 � i sin1�nu 2 � cos nu � i sin nu.

z˛

n � 1cos u � i sin u 2n � cos nu � i sin nuz � cos u � i sin u,

and  z˛

n �
1
z˛

n � 2i sin nu

 z˛

n �
1
z˛

n � 2 cos nu

Important points to note

1. The roots are equally spaced around the Argand diagram. Thus for the square root 

they are apart. Generally for the nth root they are apart.

2. All the roots have the same moduli.

2p
n

p

Example

Using the result show that 

We know that 

Hence 

Hence

=  
3 sin u � sin 3u

4
 1 sin3 u �

sin 3u � 3 sin u
� 4

 � 8i sin3 u � 2i sin 3u � 6i sin u

 � z˛

3 �
1
z˛

3 � 3¢z �
1
z
≤

 1 � 8i sin3 u � z˛

3 � 3z �
3
z

�
1
z˛

3

¢z �
1
z
≤3

� 12i sin u 23 � 8i sin3 u

z �
1
z

� 2i sin u

 sin3 u �
3 sin u � sin 3u

4
.z˛

n �
1
z˛

n � 2i sin nu,

Method

1. Write the complex number in polar form.
2. Add to the argument then put it to the necessary power. This will allow us

to find multiple solutions.
3. Apply de Moivre’s theorem.
4. Work out the required number of roots, ensuring that the arguments lie in the

range Remember the number of roots is the same as the 
denominator of the power.

�p 6 u � p.

2np

Example

Find the cube roots of 
Step 1. Let 
Equating real and imaginary parts

The diagram shows the complex number lies in the first quadrant and hence the

argument is a positive acute angle.

Step 4. If we now let we will find the three solutions.

Hence 

These can be converted to the form 

12 � 2i 2
1
3 � �0.366 � 1.37i, 1.37 � 0.366i, �1 � i

x � iy.

8
1
6 ¢cos¢3p

4
≤ � i sin¢3p

4
≤≤ 8

1
6 ¢cos¢p

12
≤ � i sin¢ p

12
≤≤, 

12 � 2i 2
1
3 � 8

1
6

˛¢cos¢�7p
12
≤ � i sin¢�7p

12
≤≤, 

n � �1, 0, 1

 Step 3. 12 � 2i 2
1
3 � 8

1
6

˛bcos¢ p
12

�
2np

3
≤ � i sin¢ p

12
�

2np
3
≤r

 Step 2. 12 � 2i 2
1
3 � 8

1
6

˛bcos¢p
4

� 2np≤ � i sin¢p
4

� 2np≤r
1
3

1 2 � 2i � 28¢cos 

p

4
� i sin 

p

4
≤

 1 u �
p

4

 1 tan u � 1

 
r sin u
r cos u

�
2
2

 1 r � 222 � 22 � 28

 1 r sin u � 2
 1 r cos u � 2

2 � 2i � r˛1cos u � i sin u 2
2 � 2i.

2

2O x

iy

�

2 � 2i

This calculation can also
be done directly on the
calculator.

Roots of complex numbers
Earlier in the chapter we found the square root of a complex number. We can also do
this using de Moivre’s theorem, which is a much more powerful technique as it will allow
us to find any root.



The fourth roots of unity will be:
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We can also use the exponential form to evaluate roots of a complex number.
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Example

Find 

Step 1. Let 
Equating real and imaginary parts

The diagram shows the complex number lies in the fourth quadrant and hence
the argument is a negative acute angle.

Step 4. Clearly, if we let we will find three solutions, but does

or give the fourth solution? Since is negative, then using

takes the argument out of the range Hence we use

Thus 
These can be converted to the form 

11 � i 2
1
4 � �0.213 � 1.07i, 1.07 � 0.213i, 0.213 � 1.07i, �1.07 � 0.213i

x � iy.
11 � i 2

1
4 � 2

1
8e�i 

9p
16, 2

1
8e�i 

p
16, 2

1
8ei 

7p
16, 2

1
8ei 

15p
16

n � 2.

�p 6 x 	 p.n � �2

p

16
n � �2n � 2

n � �1, 0, 1

 Step 3. 11 � i 2
1
4 � 2

1
8ei1�p

16 �np
2 2

 Step 2. 11 � i 2
1
4 � 122ei1�p4 �2np2 2

1
4

1 1 � i � 22e�i 
p
4

 1 u � �
p

4

 1 tan u � �1

 
r sin u
r cos u

�
1

�1

 1 r � 212 � 1�1 22 � 22

 1 r sin u � �1
 1 r cos u � 1

1 � i � reiu

11 � i 2
1
4.

�1

1

1 � i

O x

iy

�

Roots of unity
We can find the complex roots of 1 and these have certain properties.

1. Since the modulus of 1 is 1, then the modulus of all roots of 1 is 1.
2. We know that the roots are equally spaced around an Argand diagram. Since one

root of unity will always be 1, we can measure the arguments relative to the real
axis.
Hence the cube roots of unity on an Argand diagram will be:

1

1

1
x

iy

2
3

2
3

2
3

�

�

�

1
�1 O x

iy

i

�i

3. Since the roots of unity are equally spaced and all have modulus 1, if we call one

complex root b, say, then for the cube roots of unity the other roots will be 1 and

Similarly for the fifth roots, if one complex root is b, then the other roots will be

and b˛

4.1, b˛

2, b˛

3

b˛

2.

Example

a Simplify 

b Hence factorise 
c If is a complex root of this equation, simplify:

i

ii

iii

iv

a

b

c

i Since 

ii Since and from part b

iii

Since 

iv

 � 1 � 


 1
 � 1 2 1
2 � 
 2 � 
3 � 
2 � 
2 � 



3 � 1, 
4 � 1 � 
 � 



4 � 
3 � 


1 � z � z˛

2 � 0, 1 � 
 � 
2 � 0z � 


z � 
, 
3 � 1

 1 1z � 1 2 11 � z � z˛

2 2 � 0

 z˛

3 � 1 1 z˛

3 � 1 � 0

 � 
3 � 1

 1
 � 1 2 11 � 
 � 
2 2 � 
 � 
2 � 
3 � 1 � 
 � 
2

1
 � 1 2 1
2 � 
 2


4

1 � 
 � 
2


3




z˛

3 � 1.

1
 � 1 2 11 � 
 � 
2 2 .

Again, this calculation
can also be done directly
on the calculator.



5 Without first calculating them, illustrate the nth roots of unity on an Argand
diagram where n is:
a 3 b 6 c 8 d 9

6 a Express the complex number 16i in polar form.
b Find the fourth roots of 16i in both polar form and Cartesian form.

7 a Write in polar form.

b Hence find the real and imaginary parts of 
8 Prove those trigonometric identities using methods based on de Moivre’s

theorem.

a

b where 

9 a Use de Moivre’s theorem to
show that where 

b Use your result to solve the equation 

10 Let and Express 

in the form 

11 Let and 

a Write in modulus-argument form.

b Find r if 

12 Given that is a complex cube root of unity, and

simplify each of the expressions and

and find the product and the sum of these two expressions.

13 By considering the ninth roots of unity, show that:

14 a If show that and

b Hence show that:

i

ii

15 Consider 
a Find the root to this equation in the form which has the

smallest positive argument. Call this root 

b Find in modulus-argument form.

c Plot the points that represent on an Argand diagram.

d The point is mapped to by a composition of two linear

transformations. Describe these transformations.
16 a Show that satisfies the equation 

b Knowing that the three roots of the equation are equally spaced

around the Argand diagram and have equal modulii, write down the other

z˛

3 � i

z˛

3 � i.�i

z˛1
n�1z˛1

n

z˛1
2, z˛1

3, z˛1
4, z˛1

5, z˛1
6, z˛1

7

z˛1
2, z˛1

3, z˛1
4, z˛1

5, z˛1
6, z˛1

7

z˛1.
r˛1cos u � i sin u 2

z˛

7 � 128.

sin6 u �
1

32
 1�cos 6u � 6 cos 4u � 15 cos 2u � 10 2

cos4 u � sin4 u �
1
4

 1cos 4u � 3 2

2i sin nu.z˛

n �
1
z˛

n �

z˛

n �
1
z˛

n � 2 cos nuz � cos u � i sin u,

cos 

2p
9

� cos 

4p
9

� cos 

6p
9

� cos 

8p
9

� �
1
2

11 � � � 3�2 2

11 � 3� � �2 21 � � � �2 � 0,

�3 � 1�

�z˛1z˛2
2� � 4.

z˛2

z˛2 � 3 � 4i.z˛1 � r¢cos 

p

3
� i sin 

p

3
≤

x � iy.

¢z˛1

z˛2
≤4

z˛2 � m¢cos 

p

3
� i sin 

p

3
≤.z˛1 � m¢cos 

p

6
� i sin 

p

6
≤

t˛

4 � 4t˛

3 � 6t˛

2 � 4t � 1 � 0.

t � tan u.
tan 4u �

4t � 4t˛

3

1 � 6t˛

2 � t˛

4

t � tan utan 6u � 2¢ 3 � 10t˛

2 � 3t˛

4

1 � 15t˛

2 � 15t˛

4 � t˛

6≤
sin 3u � 3 cos2 u sin u � sin3 u

11 � i23 216.

1 � i23
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1 Use de Moivre’s theorem to express each of these complex numbers in the
form 

a b c

d e f

g h i

j

2 Express each of these in the form 

a b

c d

e f

3 Simplify these expressions.
a

b

c

d

e

f

g

h

i

j

4 Use de Moivre’s theorem to find these roots.
a the square root of b the square root of 

c the cube roots of d the cube root of 

e the fourth roots of f the fifth roots of 

g the sixth roots of 23 � i

�5 � 12i3 � 4i

3 � 5i1 � i

�2 � 2i�5 � 12i

4B¢cos 

p

3
� i sin 

p

3
≤

¢cos 

p

8
� i sin 

p

8
≤5¢cos 

p

16
� i sin 

p

16
≤�2

¢cos 

p

8
� i sin 

p

8
≤4

¢cos 

p

4
� i sin 

p

4
≤5¢cos 

p

3
� i sin 

p

3
≤2

¢cos 

p

6
� i sin 

p

6
≤4

¢cos 

1
3

 u � i sin 

1
3

 u≤¢cos 

1
2

 u � i sin 

1
2

 u≤
1cos 4u � i sin 4u 2 1cos 7u � i sin 7u 2

1cos 10u � i sin 10u 2 1cos 2u � i sin 2u 2

1cos u � i sin u 2

1cos 4u � i sin 4u 2

1cos 5u � i sin 5u 2

1cos 8u � i sin 8u 2

1cos 5u � i sin 5u 2

1cos 2u � i sin 2u 2¢cos 

1
2

 u � i sin 

1
2

 u≤
1cos 3u � i sin 3u 2 1cos 5u � i sin 5u 2

cos 

1
8

 u � i sin 

1
8

 ucos 2u � i sin 2u

cos¢�1
4

 u≤ � i sin¢�1
4

 u≤6 cos1�3u 2 � 6i sin1�3u 2

4 cos 

1
2

 u � 4i sin 

1
2

 ucos 7u � i sin 7u

r˛1cos u � i sin u 2n.

¢cos 

p

5
� i sin 

p

5
≤

1
2

¢cos 

p

4
� i sin 

p

4
≤�5¢cos 

p

6
� i sin 

p

6
≤9¢cos 

p

3
� i sin 

p

3
≤6

341cos u � i sin u 2 4�
1
31cos u � i sin u 2

1
21cos u � i sin u 2�9

331cos u � i sin u 2 4�51cos u � i sin u 225321cos u � i sin u 2 410

r˛1cos nu � i sin nu 2 .
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Exercise 4



12 Given that find the values of a and b if
a a and b are real
b a and b are conjugate complex numbers.

13 Let 

a Show that 

[You may assume that for the purposes of differentiation and integration, i may
be treated in the same way as a real constant.]

b Hence show, using integration, that 
c Use this result to deduce de Moivre’s theorem.

d i Given that where use 

de Moivre’s theorem with to find the values of the constants a, b and c.

ii Hence deduce the value of [IB Nov 06 P2 Q5]

14 Given that z and are complex numbers, solve the simultaneous equations

expressing your solution in the form where a and b are real. [IB Nov 89 P1 Q20]

15 Let for 

a i Find using the binomial theorem.
ii Use de Moivre’s theorem to show that 

b Hence prove that 

c Given that find the exact value of [IB May 06 P2 Q2]

16 Consider the complex number 

a i Find the modulus of z.
ii Find the argument of z, giving your answer in radians.

b Using de Moivre’s theorem, show that z is a cube root of one, i.e. 

c Simplify expressing your answer in the form where a

and b are exact real numbers. [IB Nov 02 P2 Q2]

17 In this Argand diagram, a circle has centre the origin and radius 5, and the

line which is parallel to the imaginary axis has equation The complex 
number z corresponds to a point inside, or on, the boundary of the shaded region. 
Write down inequalities which Arg z and Re z must satisfy. (Re z means the real
part of z.)

�z�,

x � �2.

u �
p

3

a � bi,11 � 2z 2 12 � z˛

2 2 ,

z � 321.

z �

¢cos 

p

4
� i sin 

p

4
≤2¢cos 

p

3
� i sin 

p

3
≤3

¢cos 

p

24
� i sin 

p

24
≤4 .

tan 3u.sin u �
1
3

,

sin 3u � sin u
cos 3u � cos u

� tan u.

 sin 3u � 3 sin u � 4 sin3 u.

cos 3u � 4 cos3 u � 3 cos u and
z˛

3

�
p

4
6 u 6

p

4
.z � cos u � i sin u

a � bi

z � � � 11
iz � 5� � 29

�

lim
uS0

 

sin 6u
sin u

.

n � 6

sin u � 0,
sin 6u
sin u

� a cos5 u � b cos3 u � c cos u,

y � eiu.

dy

du
� iy.

y � cos u � i sin u.

12 � 3i 2a � 3b � 2 � 5i,
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two roots, and of the equation in modulus-argument form. 

( lies in the second quadrant.)

c Find the complex number such that and 

17 The complex number z is defined by 

a Show that 

b Deduce that 

c Using the binomial theorem, expand 

d Hence show that giving

the values of a, b, c and d.

cos6 u � a cos 6u � b cos 4u � c cos 2u � d

1z � z˛

�1 26.

z˛

n �
1
z˛

n � 2 cos nu.

1
z

� cos1�u 2 � i sin1�u 2 .

z � cos u � i sin u.

�z˛2 � �i.�z˛1 � z˛2�

z˛1

z˛2,z˛1
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Review exercise

1 Find the modulus and argument of the complex number 

2 Find the real number k for which is a zero of the 

polynomial [IB Nov 00 P1 Q10]

3 If is a root of the equation find the values of a

and b.
4 If z is a complex number and find the value of 

[IB Nov 00 P1 Q18]
5 a Show that 

b Hence or otherwise, find 

6 Solve the equation for x and y, leaving your answers as 

rational numbers. [IB May 94 P1 Q15]
7 Find a cubic equation with real coefficients, given that two of its roots are 3

and 

8 If find the real part and the imaginary part of 

9 Given that where b is real and positive, find the exact value

of b when [IB May 01 P1 Q14]

10 a If find the modulus and argument of z.
b Hence find the modulus and argument of 
c i On an Argand diagram, point A represents the complex number 0 + i,

B represents the complex number z and C the complex number 
Draw these on an Argand diagram.

ii Calculate the area of triangle OBC where O is the origin.
iii Calculate the area of triangle ABC.

11 a Verify that 
b Hence or otherwise, find the cube roots of unity in the form 
c Find the cube roots of unity in polar form and draw them on an Argand

diagram.
d These three roots form the vertices of a triangle. State the length of each

side of the triangle and find the area of the triangle.

a � ib.
1z � 1 2 11 � z � z˛

2 2 � z˛

3 � 1.

z˛

2.

z˛

2.
z � 1 � i23 ,

arg z � 60°.

z � 1b � i 22,

z �
1
z
.z � x � iy,

1 � i23.

�i
x � iy

�
4 � 7i
5 � 3i

11 � i 264.

11 � i 24 � �4.

�z�.�z � 16� � 4�z � 1�,

z˛

2 � az � b,z � 1 � 2i

z˛

2 � kz � 5.

1 � ki, 1i � 2�1 2 ,

5 � 7i
1 � 2i
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(�5, 0)
�

(0, �5)

(5, 0)

(0, 5)

0

iy

x

x � �2



18 Let and where and 

a Express in the form where 

b For what values of k is a real number?

19 a Find all three solutions of the equation where z is a complex
number.

b If is the solution of the equation which has the smallest

positive root, show that 

c Find the matrix product giving your answer

in its simplest form (that is, not in terms of ).
d Solve the system of simultaneous equations

giving your answer in numerical form (that is, not 
in terms of ). [IB Nov 98 P2 Q4]

20 and are complex numbers on the Argand diagram relative to the 

origin. If show that and differ by 

21 a Find the two square roots of in the form where x and y
are real.

b Draw these on the Argand diagram, labelling the points A and B.

c Find the two possible points and such that triangles and
are equilateral.ABC˛2

ABC˛1C˛2C˛1

x � iy3 � 4i

p

2
.arg z˛2arg z˛1�z˛1 � z˛2� � �z˛1 � z˛2�,

z˛2z˛1

�

 x � �2y � �z � �3

 x � �y � �2z � �3

 x � y � z � 3

�

£
1 1 1
1 � �2

1 �2 �

≥£
1 1 1
1 �2 �

1 � �2

≥
1 � � � �2 � 0.

z˛

3 � 1z � �

z˛

3 � 1

z
�

a, b H �.a � ib
z
�

i � 2�1.k H �� � k � 7iz � 3 � ik
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Abu Bekr ibn Muhammad ibn al-Husayn Al-Karaji was born on 13 April 953 in
Baghdad, Iraq and died in about 1029. His importance in the field of mathematics is
debated by historians and mathematicians. Some consider that he only reworked
previous ideas, while others see him as the first person to use arithmetic style
operations with algebra as opposed to geometrical operations.

In his work, Al-Fakhri, Al-Karaji succeeded in defining x, and 

and gave rules for finding the products of any pair without reference to geometry. He

was close to giving the rule 

but just failed because he did not define .

In his discussion and demonstration of this work Al-Karaji used a form of
mathematical induction where he proved a result using the previous result and
noted that this process could continue indefinitely. As we will see in this chapter,
this is not a full proof by induction, but it does highlight one of the major
principles.

Al-Karaji used this form of induction in his work on the binomial theorem,
binomial coefficients and Pascal’s triangle. The table shown is one that Al-Karaji
used, and is actually Pascal’s triangle in its side.

He also worked on the sums of the first n natural numbers, the squares of the first
n natural numbers and the cubes of these
numbers, which we introduced in Chapter 6.

x˛

0 � 1

x˛

n
˛x˛

m � x˛

m�n for all integers n and m

1
x

, 
1

x˛

2, 
1

x˛

3, px˛

2, x˛

3, p
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